How fast can oil form? (+ratrods & bobs)

How Fast Can Oil Form?

by Dr. Andrew A. Snelling

Originally published in Creation 12, no 2 (March 1990): 30-34.

Many people today, including scientists, have the idea that oil and natural gas must take a long time to form, even millions of years.

Such is the strong mental bias that has been generated by the prevailing evolutionary mindset of the scientific community.


 
From Sewage to Oil

The 1 March 1989 edition of The Age newspaper (Melbourne, Australia) carried a report from Washington (USA) entitled 'Researchers convert sewage into oil. The report states that researchers from Batelle Laboratories in Richland, Washington State, use no fancy biotechnology or electronics, but the process they have developed takes raw, untreated sewage and converts it to usable oil. Their recipe works by concentrating the sludge and digesting it with alkali. As the mixture is heated under pressure, the hot alkali attacks the sewage, converting the complex organic material, particularly cellulose, into the long-chain hydrocarbons of crude oil.
 
However, the oil produced in their first experiments did not have the qualities needed for commercial fuel oil. So, the report says, in September 1987 Batelle joined forces with American Fuel and Power Corporation, a company specializing in blending and recycling oils. Together they have made the oil more 'free-flowing' using an additive adapted from one developed to cut down friction in engines. A fuel has now been produced with almost the same heating value as diesel fuel. The process from sewage to oil takes only a day or two!
 
The researchers are now building a pilot plant. As the report states, potential economic benefits of this new technology are tremendous, since the process produces more energy than is consumed during normal sewage disposal, and the surplus energy products can be sold at a profit. Bonuses include an 80 percent reduction in waste volumes, and the eradication of poisonous pollutants such as insecticides, herbicides and toxic metals that normally end up in sewage.
 
Coal to Oil in Laboratory

Of greater significance are laboratory experiments that have generated petroleum under conditions simulating those occurring naturally in a sedimentary rock basin. Between 1977 and 1983, research experiments were performed at the CSIRO (Commonwealth Scientific and Industrial Research Organisation) laboratories in Sydney (Australia). In their reports¹, 2 the researchers noted that others had attempted to duplicate under laboratory conditions geochemical reactions that lead to economic deposits of liquid and gaseous hydrocarbons, but such experiments had only lasted for a few or several hundred days, and usually at constant temperatures. Consequently, the differences in timescale and other parameters between geological processes and laboratory experiments being so great meant that scientists generally questioned the relevance of such laboratory results. Thus, in their experiments, the CSIRO scientists had tried to carefully simulate in a laboratory under a longer time period, in this case six years, the conditions in a naturally subsiding sedimentary rock basin.
 
Two types of source rock were chosen for this study-an oil shale (torbanite) from Glen Davis (New South Wales, Australia), and a brown coal (lignite) from Loy Yang in the Latrobe Valley (Victoria, Australia). Both these samples were important in the Australian context, since both represent natural source rocks in sedimentary basins where oil and natural gas have been naturally generated from such source rocks, and in the case of the Bass Strait oil and natural gas fields, sufficient quantities to sustain commercial production.
 
These two source rock samples were each split into six sub- samples, and each sub-sample was individually sealed in a separate stainless steel tube. The two sets of six stainless steel tubes were then placed in an oven at 100°C and the temperature increased by 1°C each week, After 50, 100, 150, 200, 250, and 300 weeks (that is, at maximum temperatures of 150°C, 200°C, 250°C, 300°C, 350°C, and 400°C), one stainless steel tube from each series was removed, cooled and opened. Any gas in each tube was sampled and analysed. Residues in each tube were extracted and treated with solvents to remove any oil, which was then analysed. The solid remaining was also weighed, studied, and analysed.
 
In the brown coal samples, however, during the first 50 weeks of heating, gas (mainly carbon dioxide) was produced, and the production rate increased over the next 100 weeks. Virtually no oil was formed up until this point. Between 250°C and 300°C, when the oil shale generated copious oil, the brown coal produced about 1% short-chain hydrocarbons and 0.2% oil, which resembled a natural light crude oil (similar to that commercially recovered from Bass Strait, the offshore oil fields in the same sedimentary basin as, and geologically above, the Latrobe Valley coal beds from which the samples used in the experiment came).
 
The researchers concluded that overall, the four-year (300°C) results provide experimental proof of oil shale acting as an oil source and of brown coal being a source first of carbon dioxide and then of mainly natural gas/condensate. Significantly, these products of these slow 'molecule-by-molecule, solid-state decompositions are all typical of naturally occuring hydrocarbons (natural gases and petroleum), with no hydrocarbon compounds called olefins or carbon monoxide gas being formed.
 
Geologists usually maintain that these processes of oil formation from source rocks (maturation events) commonly involve one thousand to one million years or more at near maximum temperatures.3 However, the researchers believe their series of experiments are the best attempts so far to duplicate natural, subsiding, sedimentary conditions. Extensive conversion of organic matter to hydrocarbons has also been achieved at less than 300°C under non-catalytic conditions with a minimum of water present.
 
They went on to say:

In many geological situations much longer time intervals are available but evidently the molec- ular mechanism of the decomposi- tion is little changed by the addi- tional time. Thus, within sedimen- tary basins, heating times of sev- eral years are sufficient for the generation of oil and gas from suitable precursors. The precise point in this range of times from seconds to years, at which the products adequately resemble natural gases and/or oils, remains to be established. Heating times of the order of years during recent times may even improve the pe-troleum prospects of particular ar- eas. Flooding of a reservoir with migrating hydrocarbons is more likely to produce a reservoir filled to the spill point than slow accu- mulation over a long geological period with a possibility of loss...4
 
Oil Forming Under Ocean Now

No sooner had the discovery of ongoing natural formation of petroleum been published in the journal Nature,6 than The Australian Financial Review of February 2, 1982 carried an article by Walter Sullivan of The New York Times under the heading 'Natural oil refinery found under ocean. The report indicated that "The oil is being formed from the unusually rapid breakdown of or- ganic debris by extraordinarily ex- tensive heat flowing through the sediments, offering scientists a singular opportunity to see how petroleum is formed....Ordinarily oil has been thought to form over millions of years whereas in this instance the process is probably occurring in thousands of years..... The activity is not only manufac- turing petroleum at relatively high speed but also, by application of volcanic heat, breaking it down into the constituents of gasoline and other petroleum products as in a refinery.
 

Donate 2025

Total amount
$400.00

Latest posts

Back
Top Bottom